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J .  Phys. A: Math. Gen. Vol. 11, No.  8 ,  1978. Printed in Great Britain 

Confined solutions of multidimensional inversion equations 

Henri Cornille 
Division de la Physique, CEN Saclay, BP No. 2, 91 190 Gif-sur-Yvette, France. 

Received 19 October 1977, in final form 10 March 1978 

Abstract. We establish an inversion equation associated to a system of n linear first-order 
partial differential equations with q different variables coordinates, 2 < q G n (the partial 
differential linear operator being a diagonal matrix). 

Contrary to the one-dimensional case, the degenerate kernels of the multidimen- 
sional inversion equations are nor necessarily of the pure exponential type and an infinite 
number of other functions is possible. We get for q = 2 that, among the potentials 
corresponding to these degenerate kernels there exist confined ones in the two-dimen- 
sional coordinate plane. For q 3 3,  the potentials are not entirely confined in the whole 
coordinate space. Moreover for q 2 3, the reconstructed potentials must satisfy well 
defined non-linear equations. As an application i f ,  for n = 3, we interpret one coordinate 
as a ,time and the other two as spatial coordinates, then the non-linear three-wave 
evolution equation exhibits an infinite number of particular solutions which, for any finite 
time, are confined in the coordinate plane. 

1. Introduction 

There is actually a great interest (Novikov 1977) in the explicit construction of simple 
really confined solutions of non-linear multidimensional evolution equations. A pre- 
liminary problem is the existence (or not) of confined solutions in the multidimen- 
sional coordinate space. In the inverse scattering framework, practically this means 
that we have to find out whether degenerate kernels of the inversion equation (IE) can 
lead to reconstructed potentials vanishing asymptotically in all directions of coor- 
dinate space. If the kernel of the I E  depends in fact upon only one variable then these 
degenerate kernels are purely exponential (as is the case for the IE with one coor- 
dinate), and confined solutions are possible in the one-dimensional space R and not 
possible in higher-dimensional coordinate space Rq,  4 > 1. Recently, an IE associated 
to a partial differential system with pure exponential degenerate kernels has been 
established (Cornille 1978). In this paper, for the same system, we show that there 
exists also another IE where the kernels belong to a more general class and lead to a 
progress concerning the confinement problem. 

Let us state the problem that we consider. We start from an n x n linear partial 
differential system: 

0305-4770/78/0008-1509$02.00 @ 1978 The Institute of Physics 1509 



1510 H Cornille 

where A is a diagonal eigenvalue matrix, A = (&,Ai); Q ( x l ,  . . . , x,) is an n x n ‘poten- 
tial’ 

and  (I, is a column vector. A. is a diagonal matrix partial differential operator 
A0 = ( S , , ~ ~ i ( x ~ ) d / a , , )  where each element pi(xi)a/a,, operates on a particular coordinate 
x i  and any two elements operate on two different coordinates; St i  = 1, Si,  = 0, i # j ,  pi 
being positive arbitrary functions such that lim,,,, jc;nstant ( U )  du  = +a. Let us 
define P, =Ti pF1 ( U )  du ,  then equation (1) can be rewritten: 

( A o ( f l , .  . . , f , ) + i k A - Q ( P l , ,  . . , fn))(I,(fl,. . . , f , ) = O  

where now Ao(bi id/d,) .  It follows that we d o  not reduce the generality of our  system 
by choosing pi = 1 in equation (1) and we reduce our  study to  this case in the 
following. 

Let us consider a set of solutions 

(Do(&)+ iAik)UP ( x i )  = 0, D ~ ( x )  = a/a, 
and a set of eigenfunctions ($9  = (SijVp ( x i ) ) }  when Q = 0: 

(Ao + iAk)(4?, (I,;, . . . , (I,:) = (0). 

Let us formally define a set of n column vectors {( I , j} ,  each with n components, 
i = 1,. . . , n :  

(I,j=(SijU:(xi)+ U p ( y ) K j ( x l , . .  . , x , ;  y)dy)  i, 
that we would like to be eigenfunctions when Q+ 0: (Ao+ikA- Q)(I,~~, &, . . . , (I,,)= 

In order to get this result we recall that if the transform { K : }  are such that the 
(0). 

representation (2) exists and 

Y - m  lim UP(y)K: (x l , .  . . , x,; y ) = o  (3) 

where as above Do(u)  = a/au, then one  can show that the {&} are solutions of equation 
(1) (Cornille 1978). 

Our  aim is to seek an integral equation, that we will call the inversion equation 
(IE), such that the solutions { K j }  satisfy the non-linear partial differential equations 
(NLPDE) (equation (4)) and where the degenerate kernels will not be purely exponen- 
tials. 

In Q 2 we derive such an  I E  where the kernels Fj depend upon two variables, say s, 
y, and  n parameters xl, . . . , x, subject t o  only n linear partial differential equations 
(LPDE). In order to see clearly the progress we compare with the previous one- 
coordinate case (Cornille 1977) or with our  previous IE. In these cases Fj depends 
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upon only one variable Ut =Ais - A i y  and the degenerate kernels (function of s 
multiplied by functions of y )  can only be pure exponentials. 

In the present paper, Fj depends in fact upon two independent variables 

Vi = A,(xj - s)+  1 A,x,, Vi = Ai(xi - y ) +  Amxm, 
m # j  m # i  

such that the degenerate kernels are not restricted to be purely exponential. We can 
take for instance some exponentially decreasing function of (U;)’ multiplied by a 
similar function of (Vj)2 both vanishing when \Uil+ (Gaussians, . . .). 
For the reconstructed potentials, the products of such functions appear in the 
numerator while the denominator can be bounded (for this discussion we do not 
consider the cases where the Fredholm determinants can vanish). For n = 2, the 
independent variables associated with U:, and Vi. are finally Aixi and Ajx,(i Z j )  such 
that the potentials can vanish asymptotically in the whole x l ,  x2 plane. For n = 3 we 
get the product of functions with A i x i + A j x j  as variables and so while this is a step 
forward compared with our previous pure exponential-type kernels (Cornille 1978), 
there still exist in the x l ,  x2,  x 3  space, directions where the solutions are not confined. 
Similarly for n = 4,5, . . . our solutions are not confined in the whole coordinate space. 

Further, we find for n 3 3 that our reconstructed potentials must satisfy well 
defined extra NLPDE (besides those of equation (4)) in such a way that our inversion 
formalism applies in fact only in a subspace of the whole space of possible potentials 
associated with the system (1). 

In 0 3 we derive an IE associated with the n x n system (1) when the coordinate 
space is R q  and A. is such that x, = x,+~ = . . . = x,, (4 3 2) .  The results are very similar 
to the previous ones if we replace n by 4. For q = 2 there exist confined potentials and 
not for 4 3 3. Further, for 4 3 3,  the potentials must also satisfy well defined extra 
NLPDE. If for 4 = 3 we interpret one coordinate as a time and the other two as spatial 
coordinates then these NLPDE have for any finite time, solutions which are confined in 

In § 4 we study more particularly this possibility for n = q = 3. Considering in 
equation (1) and in our IE that one x i  is a time while the other two x j , x k  are 
coordinates, then the above NLPDE can be interpreted as a non-linear three-wave 
evolution equation and we show explicitly the existence of confined solutions in R 2  for 
any finite time. 

or I V:\  + 

R 2 .  

2. Inversion equations associated with the system (1) when the number of different 
coordinates is N 

2.1. Integral equation 

Let us consider the following integral equation: 

~ j ( x 1 ,  * .  * 9 x n ;  Y )  

=Ej(x,, . . . , x , ;  y )  

+,Zn F & ( s ;  xl,. . . , x, ;  y ) K r ( x l ,  . . . , x , ;  S )  ds 
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W e  remark that the free term E: is the restriction when s = x i  of the kernel Fj. For 
each kernel F j ( s ;  x l ,  , , . , x , ;  y )  we assume the boundary condition 

lim FjK';(xl,  . . . , x , ;  s) = 0, 
S -c€ 

lim Fj = 0, 
Y-m 

and that they satisfy n independent LPDE, 

A ; ' D ~ ( x ~ ) F ~  = A ; ' D ~ ( X ~ ) F ;  = . . . = A ; ~ D ~ ( X , ) F ;  = - ( A T ~ D ~ ( ~ ) + A ; ' D ~ ( ~ ) ) F ~  (8) 

and we assume also of course that the solution of equation (6) exists and is unique. 

Property. If we assume that the { F j }  satisfy both equations (7) and (S), then the 
solutions { K j }  of equation (6) satisfy the NLPDE (equation (4)). For the proof let us 
remark that due  to  equation (8), O ~ . x , ~ ~ ~  = 0 and applying 0ix, to both sides of equation 
(6): 

Ojx,K; = - ~ j ~ j  +E F ~ D ~ ( ~ ~ ) K J "  +E I K J " o ; ~ , F ~ .  
m m 

Taking into account relations (7) and (S), the right-hand side can be written 

1 APkk;" +c 5 FLO:,Ky d s  
m f i h m  m 

and comparing with the solution of equation (6), the result (equation (4)) follows from 
the uniqueness assumption of the solution of equation (6). 

In conclusion if the kernels {F j }  satisfy equations (7) and (S), if we substitute the 
solutions { K j }  of equation (6) into the representation (2), if further the condition (3) is 
satisfied, then equations (2) are solutions of our starting partial differential system (1) 
and consequently equation (6) will be  an associated IE such that 4;. = (Aj/Ai)ki, 4 :  = 0. 

Let us define 

[Ki . . .  KA] 
X ( x i ,  . . . ,  x , ; y ) = ( K ; ( x i ,  . . . ,  x , ; y ) ) =  

, K ;  . . .  K :  
* ,  

$ ( X I , .  . . , x,; y ) =  ! F ; ( x i , .  . . , x , ;  y ) ) ,  

F ( s ;  X I , .  . . , x , ;  y ) =  ( F ; ( s ;  X I , .  . . , x , ;  y ) O ( s  - x i ) )  

where 8 is the Heaviside distribution, then equation (6) can be written in a matrix 
form: 

X(x1, . . . ,  x n ; y ) = 9 ( x 1 , . .  . , x , r y ) + [  
+53 

P ( s ; x l  , . . . ,  x , ; y ) X ( x l  , . . . ,  x,;s)ds 
-a2 

(6a 1 

2.2. Properties of the kernels Fi  

Let  us first assume that the kernels Fj are independent of the coordinates x l ,  . . . , x , ;  
i.e. Fj = F j ( s ;  y ) ,  El = Fj(x j ;  y ) .  From dFj/ax, = 0 we see that equation (8) reduces to 
(Do(s)+Ai(hi)-'Do(y))Fj = 0 and Oixifii = 0, and equation (6) reduces to our  previous 
IE (Cornille 1978) associated with the system (1). (If further x 1  = x 2  = . . . = x, ,  these 
LPDE are identical to those for the one-coordinate case.) 
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In fact Fj depends upon only one variable Vi: 

The only possible degenerate kernels are of the exponential type exp[-ym(Ais - Aiy)] 
(or superposition of such terms). If further A i A j  > 0, these kernels cannot go to zero 
when s +CO and y +CO, which leads to difficulties concerning the existence of the 
solutions of equation (6) (for instance we must necessarly take Fj = 0). 

Now we assume that the Fj depend upon the x l , .  . . , x n .  The main advance 
obtained here is that in order to satisfy the LPDE (equation (8)), Fj can now be written 
as a function of two independent variables Uj and Vi : 

where vj and 77;. are constants. If we consider degenerate kernels Fj = gj(Uj)hj(V;.) 
(or superposition gj,mh;.,m) we see that a larger class of functions exists such that all 
the above derivations are correct. 

(i) Let us still consider exponential-type kernels 

Fj = 1 exp[-yj,,(Uj +8j,mVj)] 
m 

where 
and yj,m in such a way that Fj + 0 when either s + CO or y +CO. 

(ii) In principle, we can choose for gi, h f  any kind of functions decreasing 
sufficiently when s + CO, y + 00, so that both the solution of equation (6) exists and all 
the sufficient conditions (equations (3), (7) and (8)) are satisfied. However we focus 
our attention on reconstructed potentials kj which could be confined in R n  and so we 
will exhibit simple examples where this problem is easy to study. Let us consider for 
instance: 

and yj,m are arbitrary constants. We can always choose the signs of 

g; (U; = ( ~j )"o exp[- ( U; l Z m l  1 
h j ( ~ j )  = ( v ~ ) ~ z  exp[ - (~ f ) "~ ]  (1 1) 
mo>O, m2)0 ,  m l > O  integer, m3>0integer 

and for Fj a sum of a finite number of such terms, 
In order to have a crude insight of what can happen, let us first remark that 

Kf = Ff (y = x i ) +  other terms and investigate Ej (y = x i )  in the simplest case Ff = gfhj: 
A .  - .  

For n = 2 we have the product gj(vj  + A i x , ) h j ( ~ j  +Ajx,) .  When p = (E x i  2 ) 1/2  +CO,  

either Ixl/ + CO or lx21 + CO (or both +CO) and necessarily we get for equation (1 1)-type 
kernels that IEj(y = x,)] + 0. 

For n = 3,  we have the product g j (v j+Aix i  + A k ~ k ) h j ( 7 7 j + A j ~ , + A k ~ t )  such that in 
R 3 ,  there exist asymptotic directions where IFjl+ 0 when p --* 03. The same conclusion 
holds for n > 3. 
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2.3. Simple examples 

2.3.1. For simplicity we first assume that the kernels of equation (6) are of the most 
simple form Fj = gihi given by equation (1 1). 

For n = 2 we consider first Fj = 0 and 

and get for (i, j ) =  (1 ,2)  and ( 2 , l ) :  

DK; = g;(vj + Aixi)h)(Si + hixi) = F ;  ( y  = xi)  
A .  , , ., 

(13b) 
A! ,= g;(-Aju +Aixi + vj)hi(-Aju +Aixi + 7;) du. Ip D = 1 -A:2A:lr 

D is bounded when p = ( x : + x : ) ~ ’ ~ + c o ,  Dkf + O  and finally the potentials 4; = 
A j ( A i ) - ’ k ; ( i  # j )  are confined in the x i ,  x2 plane. (In all the discussion in this paper we 
do not consider the cases where D vanishes). Secondly we introduce Fj6(xi - s), 
(i = 1 , 2 )  in (13a); F )  = gjhi and get: 

D k ’ - [  i - g i  2 h 2 i (  1 - A 1) + h :g:A:i](A:z - 1)- h : [ g : A : i A L  + g:A:z(1-  A ;  111 

if 1-2, t h e n k f - k :  

D=(A:l  -~)(~-A:~)+[A:~(A:~-~)-A:ZA:~][A:~(A:~-~)-A:IA:~] 

where 

Further 
-05 

where 

g: = g : ( - A k ~  +Aixi+ v:) i f i # k ;  

g :  = g:(-Aiu +Ajxj + vi) i f i = k # j  

and 

if j # k, 
h f = h f ( - Aiu + Aixi + 7;) if k = j # i. 

When p + m ,  D and A j , k  are bounded and gjhj, gjhj, gjhi, gjhj-0.  It follows for 
D # 0 that k: and k: are confined in the x l ,  x2  plane. 

hf=hf ( -AkU+AjXj+vj )  k 

For n = 3 we consider two examples of degenerate kernels: 
6)  

I 0 F : 6 ( ~ 2  - S )  0 

F:6 ( X  1 - S)  0 0 
y-j 0 0 F : 6 ( ~ 3  - S )  
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Dri- = 

In both examples (14a, b) ,  (15a,b), while D remains bounded when p = 
( x :  + x : + x : ) ” ~  + CO, there remain asymptotic directions in the x i ,  x 2 ,  x 3  space where 
DR;+ 0. However, if we consider finite values for one coordinate, let us say xk, then 
the I?; are confined in the x i ,  xi plane. 

2.3.2. Let us assume secondly that the degenerate kernels Fj are a finite sum of 
kernels of the type (11): 

m=l 

For n = 2 and 9 given by (13a), even if  the solutions are too complicated to be written 
in closed form (as in (13b) when mo= l), we can show the confinement properties. 
We get for (i, j )  = (1,2) and (2, 1): 

Rj = c him( g;,m + z3j,Ic:*l) 
m I 

(13c) 
~ j ~ ( 1 - 1  Ci,mC,.I) -E ~ j , , ,  Cm,r’Ci,m = E  g j , m c i , m  

m I ’  m 

where 

gi,m = g;,m(Aixi + v j , m ) ,  = hj,,(A,x, + ~ j , ~ )  
.m 

C ~ , I  = Jo gj,,(-Aiu +Ajx, + ~ j , ~ ) h j . ~ ( - A i u  +Aixj + q j , ~ )  du. 
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Excluding the zeros of the Fredholm determinants we see that the C‘k,l and the B ~ J  
are bounded when ~ = ( x : + ~ : ) ” ~ + c o .  For kj always appear in (13c) the factors 
hi,mg;.,m or h;,,mgi,l which vanish when p + CO and consequently the kj + 0 when p + m. 

2.3.3. We consider n = 2, Fj( i  # j )  given by (13a) and pure exponential degenerate 
kernels. If the Fj are independent of xI,x2,kj depend upon only one variable 
h l x 1 - A ~ x 2  and so cannot be confined (Cornille 1978). When Fj depend also upon 
xl, x 2 ,  we give examples where the solution is not confined. 

(i) We consider in (13a, b )  the most degenerate case Fj = 
ai  e x p [ v ~ ~ ( A i ( x i - s ) + A i x i ) + q ~ ~ ( A i ( x i - y ) + A i x i ) ] ,  Re v i>O,  Re ~ f > 0 ;  af, vi, 7;. being 
fixed constants and get: 

where 

(136‘ )  

and R e t 1 ,  R e t 2  are two independent directions of the x 1 , x 2  plane (Re(v:v:- 
77:~:) # 0). In the xl, x 2  plane let us consider asymptotic directions along Re = 0 
where necessarily /Re [,I + CO. When Re 6, + +a then IkI, I + 0, however when Re 5, + 

-CO, then lk~I+laI,l#O and the potentials are not confined. If further we require 
RI =constant (I?:)* or constant k:. at least either = 6, and IkI, I depends 
upon only one variable Re t1 = Re 5, and is not confined. 

(ii) We consider in (13a) and (13c) mo= 2, for simplicity we take A 1  = +1, A 2  = -1 
and reduce our study to k: =p(k:)* (k: complex) or k: = p k :  (k: real) with p real. 
For the Fj we take 

= 6; or 

am and qn,m being fixed constants. We find 

where D is the Fredholm determinant of equation (6). 

D =  l + c l  e2‘l+C2e2€2++Cje4+€2+Cqe2(€i+52) 

N = c5 e2E1+C6 e2E2+C7 e f ~ + h + ~ ~  e 2 ( ~ 1 + ~ 2 ) + c ~ ~ 3 ~ 1 + 5 2 + ~ ~ ~ e 3 6 + 5 1  

t i  = X I  Re 71.i + x 2  Re 772i and the c,’s can be computed from Re am and p, for 
instance c5 = - p l a 1 / ~ / 2  Re 772.1. In the x l ,  x 2  plane let us consider asymptotic direc- 
tions where 51 = 0. When t2 + *CO, we find Ik:l.+ constants. One of the two constants 
( C ~ / ( ~ + C ~ ) ~ )  being zero only if a l  =0 ,  we come back to our previous mo== 1 case. 
Consequently 1k:I cannot be confined in the x l ,  x 2  plane. 
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2.4. NLPDE satisfied by the solutions of equation ( 6 )  for n 3 3 

In order to be an IE, the KI solutions of equation (6) must satisfy the NLPDE (equation 
(4)). However we shall see for n 3 3  that the potentials kj and the solutions K j  are 
constrained to satisfy other particular NLPDE. We remark from equation (8) that our 
kernels Fj, satisfy: 

Consequently from equation (6) we get: 

and comparing with the solution of the IE (equation (6)): 

For n 3 4 we can even get NLPDE between the potentials I?:.: 

( A ; ' D O ( X k ) - h q ' D O ( X q ) ) k ;  =h,'kikP -A;'k:kf (18) 

i, j ,  k ,  q being all different n 2 4. 
Even for I I  = 3 where all the i, j ,  k ,  q cannot be different we get an NLPDE between 

the potentials kj if between the two relations (4) and (17) we eliminate the K i k j  
term. We get: 

This equation is similar to a three-wave non-linear evolution equation where one 
coordinate represents the time whereas the two other span a two-dimensional coor- 
dinate space. Let us remark in the examples (14) and (15) that if one coordinate is a 
time and has fixed values then the kj are confined in the plane corresponding to the 
other two coordinates. 

Finally for n 3 3,  the IE (equation (6)) leads both to non-confined solutions in the 
n-coordinate space and to potentials restricted to satisfy well defined NLPDE (equa- 
tions (17), (18) and (19)) and we conclude that it applies only to a subspace of the 
space of possible potentials associated with the system (1). 

3. Inversion equations in some particular (less than N )  coordinate case 

If in the linear partial system (1) we put all the coordinates xi  equal, we must recover 
the associated one-coordinate IE. Now what happens if two coordinates are equal, 
three coordinates,. . . ? 



1518 H Cornille 

3.1. Statement of the problem 

Let us assume in (1) that the first q coordinates are different whereas the (n-q)  
remaining ones are equal: x ,  = xq+l  = . . . = x,.  

( A 0 ( x l , x 2 , .  . . , X ~ , X ~ + ~ = X ~ ,  . . . ,x ,=x,)+ikA-Q)t ,b=O. 

As above we call Do(u)  the operator a/au and the elements of the diagonal A. matrix 
are Do(xl),  D0(x2), . . . , Do(x,), Do(x,), . . . , Do(xq). Let us consider the represen- 
tation (2) where xi  = xq for j 2 q : 

If the { K j }  satisfy ( 3 ' )  ( ( 3 )  with x m  = x ,  for m 2 q )  and 

for either j <q or m < q I? 
qj = o ,  p- 1 ) k j  f o r b o t h j a q , i a q  ,;. = 

Aj 
- K J  for either j < 4  or i < q  

( 5 ' )  

then one can show that the {t,bj} are solutions of equation (1'). 
Let us notice that if q = 1, equations (4') and (5') reduce to the corresponding 

equations of the one-coordinate case whereas if q = n, equations (4') and ( 5 ' )  are 
identical to equations (4) and (5). 

3.2. Inversion equations associated with the system (1') 

Let us consider 

K j ( x i , .  . . , x q ;  Y )  
- .  

=Fj (x , ,  . . . , x q ;  y )  

+mzn [ F L ( s ;  x l , .  . . , x , ;  y ) K y ( x l , .  . . , x , ;  s )ds  

E j ( X 1 , .  . . , x q ;  y ) = F j ( s  =xj;x1, * .  . , x , ;  y )  (6') 

where x m  = x, for q s m S n and xi = x,  for h S j S n. Let us assume that the kernels 
Fj satisfy the boundary condition (7') ( (7)  with x m  = x,  for m t q )  and q independent 
LPDE: 

A ;'Do(xl)Fj = A ; ' D o ( x ~ ) F ~  = . . . = A ;'Do(x,)Fj = -(A;'Do(s)+ A ;'Do(y))Fj. (8') 
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We assume of course that the solution of equation (8) exists and is unique. 

Property. If we assume that the {F:} satisfy both equations (7') and (8') and further that 
A, = A,+1 = . , . = An, then the solutions { K ; }  of equation (6') satisfy the NLPDE (equa- 
tion (4')). 

From equation (4') and A, = A, for m a q we get: €7 = Ai(Am)-l  for j < 4, and for 
j aq, €7 = Aj(Am)-' if m < q  and €7 = 0 if m ~ q .  For the proof, due to equation (8'), 
Oixff = 0 and applying Ojx, to both sides of equation (6') we get that 

Comparing with the I E  (equation (6')), the result (4') follows. We remark: 
(i) From A, = A ,  for m 2 q and equation ( 5 ' )  we get q f  = 0 for both i 3 q, j 2 q.  It 

follows that if the {Fj} depend explicitly upon the xI ,  . . . , x ,  in a case where x, = x, 
for m aq, then necessarily A, = A ,  for m L q  and the potentials q f ( j a q ,  i aq) are 
zero. 

(ii) For q = 1, we have x 1  = x2 = . . , = x, = x ,  a one-coordinate case. It follows that 
if the {Fj(s; x ;  y)} depend upon the coordinate x, then necessarily A 1  = A 2 = .  . . = A ,  
and all the potentials 4;. are zero. Our IE (6') fails in the one-coordinate case. 

(iii) If the {Fj(s;  y)} are independent of the xl ,  . . . , x,, then equation (8') reduces 
to (Do(s)+Ai(Ai)-'Do(y))Fj = 0, Oixfj = 0, the { A m }  for m aq are not necessarily 
equal and we recover our previous IE (Cornille 1978). 

In  conclusion, for the system (1) where two, three,. . . , coordinates are equal, 
there exist a least two different associated IE as long as we have more than one 
coordinate. 

3.3. Properties of the kernels {Ff} 

From the LPDE (equation (8')) we see that Fj still depends upon two independent 
variables Vi and Vi :  

where if j 3 q, Ai = A,, m # 4, xi = x,, if i 2 q, A i  = A,, 1 # q, xi = x,. Because the qj = 0 
for both i 3 4 ,  jsq  or for i = j ,  we can take Fj = O  for i L q, jaq or i = j .  

It follows from equation (lo'), as in 5 2.2, that the degenerate kernels are not 
reduced to purely exponential forms. 

(i) If the Fj are exponentials, because s and y appear in the linear combination 
Ais + (constant)Aiy we can always choose the constants in such a way that Fj + 0 when 
s +CO or y +CO. 

(ii) In the following we consider only degenerate kernels of the same type as 
equation (1 1) where gi + 0, hj + 0 when respectively 1 Vi1 + CO, 1 Vi I + CO. In order to 
investigate the possibility of confined solutions we first consider (y = x i ) .  
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where if j 2 q ,  m # q and if i 3 q,  1 # q. As previously, in order that Fi(y = x i )  can 
vanish in the R q  space, g j  and h;. must depend on only one coordinate and so q = 2, 
n > 2. Further the two coordinates appearing respectively in g i  and hi must be 
different. We take for q = 2, = 0 if both i 2 2, j 3 2, or i = j and for the remaining 
cases 

Ei - E: = g ;  ( A  1x1 + vi’ )hj  ( A 2 x 2  + 77; ), 1 - 8’1 ( A z x z  -t ~ i ) h ’ l  ( A  1x1 + 77;) 

which are confined in the x l ,  x2 plane. 
For q > 2, our E f . ( y  = x i )  are not confined in the R q  space; however let us consider 

q = 3 and n > q. We take Fj = 0 and F k ,  F;, F Y ,  F? as the only degenerate kernels 
different from zero. We get 

E j ( y  = x i ) = g f ( A i X ,  f h k x k  + V i ) h j ( h j X j + A k X k + 7 7 j )  where xi # x ,  # xk ,  i # j # k ;  

Aixj = A 3 ~ 3 ,  h k X k  = h 1 X  1 .  

We verify that if any one X k  value is fixed, then the { E ; ( y  = x i ) }  are confined in the 
associated xi, xi plane. 

3.4. Some simple examples for q = 2 and n 2 3  

We assume that the kernels of equation (6‘) are of the form Fj = gihj, given by 
equation (1 l), and restrict our study to q = 2, n > q ;  i.e. a two-dimensional X I ,  x2 

space. We consider 

0 

The potentials ki and k{ ( j  = 1, . . , , n)  are obtained from equation (6’) by the resolu- 
tion of a linear algebraic system. 
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(i) For n = 3,  9 in equation ( 1 5 )  reduces to the kernel ( 1 5 a )  and the potentials 
k:, k:, k:, k: are given in a closed form (156)  where ( 1 . 5 ~ )  is replaced by 

gf = gf ( A l x l  + vj), S'l = g ' l ( A z x z + ~ ' 1 ) ,  
( 1 5 ' ~ )  

hk = A 2  if i = 1 and A k  = A 1 ,  A i  = A 2  if i >  1. From (156), (1.5'~) we see that Aj,k and D 
are bounded when p = ( x : + x : ) " ~ +  03. .4ssuming, as always in the discussion that 
D # O ,  for the kj in (15b) factors like gkhfl, or g k h k ,  appear, which vanish when 
p+CO. 

(ii) For n > 3, even if the solution is too complicated to be written in closed form, 
one can explicitly show the confinement properties. The potentials are kf and k', 
( j  = 2 ,  . . . , n ) .  We easily get from equation (6') for k ;  : 

B;(I  - A ; ~ A ; ~ ) -  B;A;,A:, = A;, 
4 i f P  

and for k:  

where hj, gj and Aj,k are still given by (15 '~ ) .  Always including the zeros of the 
Fredholm determinants, we see that Aj,k, BY, Cp are bounded in R2.  For k,? the 
factors g j h i ,  g i h p  appear and for ki the factors hig i ,  big'; appear (for the term 
where C, is present) which vanish when p +CO.  

So for q = 2 ,  n > 2 ,  the potentials reconstructed from equation (15) (Fj = gihj 
being of the equation ( 1  1 )  type) are confined in the x l ,  x2  plane. 

1 1  1 1  

3.5. NLPDE satisfied by the solutions of equation (6') for q 2 3 ,  n z= 4 

For n 2 4 ,  q 3 3  and from equation (8') we remark that the operator ALIDo(xk ) -  
A,'Do(x,) applied to Fj or gives zero ( j ,  k , p ,  all different and xi, xk,  x p  all 
different). If we apply the same operator to both sides of equation (6 ' )  and compare 
with the solution of equation (6') we get: 

A ilDo(Xk)--h i1D~(Xp))Kj = -(hk)-'K:kf (hp)-'K$; if xk # x,, x p  # xq 

If xi ,  xi ,  x k ,  x,  are all different (which means necessarily q 3 4 ) ,  the relations (17') hold 
for the potentials; i.e. when Kj, Kb, Km are replaced by Ki, Kb, km. A .  A .  
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However even for q = 3, n > 3, i.e. an R 3  space, we obtain NLPDE satisfied by the 
potentials (k;, k:, k:, k: ; j = 2, . . , , n ;  1 = 3, , . . , n)  if into the relations (17) we 
take into account the NLPDE (equation (4')). We get: 

( A ; ' D o ( x j ) + A  ; ' D o ( x i ) - A  i1Do(X3))kj 
m = n  1 .  

m = 3  
=2A;' 1 K $ Y ;  ( i ,  j ) =  (1,2) and (2, 1) 

( A ; ' D o ( X j ) + h  i 1 D o ( X 3 ) - A  k l D o ( X k ) ) k j  
(19') 

= 2A ;'kikf ; i = 3 , .  . . , n ; ( j , k ) = ( l , 2 ) a n d ( 2 ,  1) 

( A ; ' D o ( X j ) + A  i1D0(X3)-h i ' D o ( x k ) ) R i  

= 2A;'RLk: ; i = 3 , .  . . , n ; ( j , k ) = ( l , 2 ) a n d ( 2 ,  1). 

These NLPDE are generalised non-linear three-wave equations if one coordinate is a 
time and the two other define an R 2  space. If we assume Fj = gfhj of the equation 
(11) type, then with straightforward but tedious calculations we could verify that at 
fixed time the potentials are confined in this two-coordinate plane. However in the 
next section we shall study explicitly a similar simpler case 4 = 3,  n = 3. 

3. Confined solutions of the three-wave NLPDE in a two-dimensional space 

In the previous sections we have seen for q 3 that both the potentials associated to 
our IE are not confined in the x i ,  . . . , xq space and that they must satisfy a generalised 
three-wave NLPDE if one coordinate is interpreted as a time. Here for 4 = 3 (and only 
n = 3 for simplicity) we study further this NLPDE and particularly the confinement 
problem in a two-dimensional space. We come back for n = 4 = 3 to our example 9 
given by (15a) (Fj  = gjhj being of the same type as equation (11)) where the six 
potentials k;., i (or j ) =  1, 2 ,  3, i # j satisfy equation (19): 

We remark that kj and ki satisfy the same NLPDE. If the functions gi  and hi. are 
linked then k:. and ki are also linked. Let us assume: 

g; =&hi)*, a; real numbers. (20) 

Then from equations (15b, c)  we get: 

Iz: = (k;)*a:(u;)y1, R: = (k:)*a:(a:)-' k2- 2 1 3 1 - 1  
3 - (+1(+3(0.1a2) m*, 

and the NLPDE (equation (19)) can be written between only three potentials. For 
instance let us choose B1 = k:, BZ = k:, B3 = k: then {B1, B2, B3) satisfy the NLPDE 
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Taking into account the relation of equation (20) in (15b) we eliminate the gi 
functions and obtain for the Bi's expressions where only the hj appear: 

+ g b ? a b ? /  I f ~ : / ~ d u J  Ih?12du(l lhi12du/ lh:I2du-I/ h:*h: dui2) 

where hj = hj(Aixi +hkXk +vi,)  

I hj*h i du = Jo (h  j( - Aiu + Aixi + Akxk + vi,))* h (- Aiu + Aixj + A k x k  + 77 L)  du. 

Finally we have four independent arbitrary functions h i ,  h i ,  h:, h? that we take to be 
of the equation (11) type. Firstly, if we construct B1, B2, B3 following the above 
formulae we can directly verify that they satisfy the NLPDE (21). Secondly if we 
consider one of the three variables x l r  x 2 ,  x 3  as a fixed time, we can verify (outside the 
values where the Fredholm determinant D is zero) that the Bi's are confined in the 
plane corresponding to the other two variables. Applying the Schwarz inequality to 
the third term of D and if via: < 0, a $ ~ ?  < 0, let us remark that in this case D f 0 
whereas in other cases D can have zeros. 

W 

4. Conclusion 

In this paper we were asking if there exist potentials reconstructed from the inversion 
formalism which are really confined in a more than one coordinate space. We have 
determined IE associated with an n x n system of linear partial differential equations 
with q different coordinates (1 < q  S n ) .  When q > 1 we find that there exist at least 
two different IE,  the second being a generalisation of the first. 

For the first IE, the kernels Fj, which are almost independent of the coordinates, 
depend upon one variable U;  (s, y ) ,  and the pure exponential degenerate kernels 
cannot lead to confined reconstructed potentials. In  the following we shall always 
discuss the second IE. 

For the second IE the kernels Fj depend upon two independent variables 
Ui(s, x l , .  . . , x,) ,  V j ( y ,  xl, . . . , x , )  and the degenerate kernels gj(Uj>hi(Vi)  (or a 
finite sum of such terms) are not restricted to be purely exponential. For q = 2 we 
show that there exist confined reconstructed potentials in the xl, x2  plane and they are 
not constrained to satisfy particular NLPDE. On the contrary for q 2 3, both the 
reconstructed potentials are not confined in the corresponding R" space and they 
must satisfy NLPDE similar to the generalised non-linear three-wave evolution equa- 
tion in an l?"-' space if we interpret one coordinate as a time. So for 4 3 3, our IE 
applies on a subspace of the space of all the potentials associated with our starting 
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linear partial differential system. We think that there could exist for q 2 3 other IE 
where these drawbacks disappear. 

However, if for q = 3 we interpret one coordinate as a time, the non-linear 
three-wave evolution equations exhibit an infinite number of explicit solutions which, 
for any finite time, are confined in a two-dimensional coordinate space. In order to 
see the progress obtained we can compare with the old Zakharov and Shabat (1974) 
resultst. For instance here, in the most simple degenerate case (when the kernels are 
simply a product of a function of y by a function of s), we get explicit solutions which 
can be considered as solitary waves if we adopt the definition recently given by Strauss 
(1977). 
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